Molecular Genetic Features of Polyploidization and Aneuploidization Reveal Unique Patterns for Genome Duplication in Diploid Malus

نویسندگان

  • Michael J. Considine
  • Yizhen Wan
  • Mario F. D'Antuono
  • Qian Zhou
  • Mingyu Han
  • Hua Gao
  • Man Wang
چکیده

Polyploidization results in genome duplication and is an important step in evolution and speciation. The Malus genome confirmed that this genus was derived through auto-polyploidization, yet the genetic and meiotic mechanisms for polyploidization, particularly for aneuploidization, are unclear in this genus or other woody perennials. In fact the contribution of aneuploidization remains poorly understood throughout Plantae. We add to this knowledge by characterization of eupolyploidization and aneuploidization in 27,542 F₁ seedlings from seven diploid Malus populations using cytology and microsatellite markers. We provide the first evidence that aneuploidy exceeds eupolyploidy in the diploid crosses, suggesting aneuploidization is a leading cause of genome duplication. Gametes from diploid Malus had a unique combinational pattern; ova preserved euploidy exclusively, while spermatozoa presented both euploidy and aneuploidy. All non-reduced gametes were genetically heterozygous, indicating first-division restitution was the exclusive mode for Malus eupolyploidization and aneuploidization. Chromosome segregation pattern among aneuploids was non-uniform, however, certain chromosomes were associated for aneuploidization. This study is the first to provide molecular evidence for the contribution of heterozygous non-reduced gametes to fitness in polyploids and aneuploids. Aneuploidization can increase, while eupolyploidization may decrease genetic diversity in their newly established populations. Auto-triploidization is important for speciation in the extant Malus. The features of Malus polyploidization confer genetic stability and diversity, and present heterozygosity, heterosis and adaptability for evolutionary selection. A protocol using co-dominant markers was proposed for accelerating apple triploid breeding program. A path was postulated for evolution of numerically odd basic chromosomes. The model for Malus derivation was considerably revised. Impacts of aneuploidization on speciation and evolution, and potential applications of aneuploids and polyploids in breeding and genetics for other species were evaluated in depth. This study greatly improves our understanding of evolution, speciation, and adaptation of the Malus genus, and provides strategies to exploit polyploidization in other species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii.

Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we con...

متن کامل

Patterns of nucleotide variation in homoeologous regulatory genes in the allotetraploid Hawaiian silversword alliance (Asteraceae).

Genome-wide duplication (polyploidization) is prevalent in a large number of eukaryotic organisms and is particularly widespread in flowering plants. Polyploid species appear to vary from their diploid progenitors in a variety of ecologically important traits, suggesting that genome duplications provide a mechanism for ecological diversification. Studies of nucleotide variation at duplicate gen...

متن کامل

Looking for Genetic Diversity in Iranian Apple Cultivars (Malus × domestica Borkh.)

The cultivated apple (Malus domestica) is one of the most important fruit crops cultivated in different regions of the world including Iran. For production and breeding of high quality apple, the knowledge of genetic diversity of the cultivated apples  is  necessary. Therefore we studied genetic diversity of 25 genotypes by using ISSR molecular markers. In present study, ten ISSR primers produc...

متن کامل

Genome duplication and the evolution of physiological responses to water stress.

Whole-genome multiplication, or polyploidy, is common in angiosperms and many species consist of multiple cytotypes that have different physiological tolerances. However, the relative importance of genome duplication vs post-duplication evolutionary change in causing differentiation between cytotypes is not known. We examined the water relations of Chamerion angustifolium, a herbaceous perennia...

متن کامل

A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium).

We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012